デルタ関数 メモ †
性質 †
よく \(\delta(x)\) とか \(\delta(t)\) のように書かれる.
定義より先に性質を見た方が感覚をつかみやすい.
\[ \int_{-\infty}^{\infty} f(x)\delta(x-a) dx = f(a) \]
関数 \(f(x)\) のある特定の場所 \(x=a\) の値を抜き出す役割.
\(\delta(x)\) の入力に対する応答が求められるのならば,畳み込み積分によって任意の入力 \( f(x) \)に対する応答が求まる.
ということでグリーン関数でデルタ関数が出てくる.
定義? †
プロットすることはできないが,\(\delta(x)\) は
\(x=0\) まわりで無限に細く,無限に細いにもかかわらず面積は 1 となる何か,
と思っておけば良い?
\[\begin{align}
\delta(x) = 0, x\neq0 \\
\int_{-\varepsilon}^{\varepsilon} \delta(x) dx = 1
\end{align}\]
デルタ関数のいろいろな表現 †
例1 †
式からはよくわからないが図を見ると確かにデルタ関数に近づいているような気がする.
\[ \lim_{a \to 0} \frac{1}{\pi}\frac{a^2}{x^2+a^2} \]
例2 †
正規分布の分散が0に近づいて,無限に細くなったような感じ.
個人的には一番わかりやすい.
\[ \lim_{a \to 0} \frac{1}{a\sqrt{\pi}}\,\exp\,\left(-\frac{x^2}{a^2} \right) \]
例3 †
振動数がどんどん激しくなるし,本当に \( n\to\infty\) でデルタ関数になる?とも感じる.
無限はすごい.
\[ \lim_{n\to\infty} \frac{1}{\pi}\,\left( \frac{1}{2} + \sum_{k=1}^{n} \cos\,kx \right) \]
例4 †
上に書いた式の親戚.
\[ \lim_{n\to\infty} \frac{\sin\,nx}{\pi x} \]
例1-4を並べると †